DIAGRAMA DE TALLO Y HOJA

Download (0)

Full text

(1)

DIAGRAMA DE TALLO Y HOJA

Es una técnica estadística para representar un conjunto de datos. Cada valor numérico se divide en dos partes. El o los dígitos principales forman el tallo y los dígitos secundarios las hojas. Los tallos están colocados a lo largo del eje vertical, y las hojas de cada observación a lo largo del eje horizontal.

Ejemplo

La siguiente distribución de frecuencia muestra el número de anuncios comerciales pagados por los 45 miembros de Greater Buffalo Automobile Dealer´s Association en 1999. Observemos que 7 de los 45 comerciantes pagaron entre 90 y 99 anuncios (pero menos de 100). Sin embargo, ¿El numero de comerciantes pagados en esta clase se agrupan en alrededor de 90, están dispersos a lo largo de toda clase, o se acumulan alrededor de 99? No podemos saberlo.

# De anuncios comprados Frecuencia

80 a 90 2 90 a 100 7 100 a 110 6 110 a 120 9 120 a 130 8 130 a 140 7 140 a 150 3 150 a 160 3 sumatoria de la frecuencia= 45

Una técnica que se usa para presentar información cuantitativa en forma condensada es el diagrama de tallo y hoja. En el ejemplo anterior no se da la identidad de los valores de la clase de 90 a 100. Para ilustrar la construcción de un diagrama de tallo y hojas usando el número de comerciales comprados, supongamos que las 7 observaciones en la clase de 90 a 100 sean 96, 94, 93, 94, 95, 96, 97. EL valor de tallo es el digito o dígitos principales, en este caso el 9. Las hojas son los dígitos secundarios. EL tallo se coloca a la izquierda de una línea vertical y los valores de las hojas a la derecha.

Los valores de las clases de 90 a 100, aparecerían como sigue: 9 | 6 4 3 4 5 6 7

(2)

Por ultimo, ordenamos los valores dentro de cada tallo de menor a mayor. El segundo renglón del diagrama de tallo y hojas aparecería como sigue:

9 | 3 4 4 5 6 6 7

Con el diagrama de tallo y hojas podemos observar rápidamente que hubo 2 comerciantes que compraron 94 comerciales y que el número de anuncios comprados fue desde 93 hasta 97. Un diagrama de tallo y hojas es semejante a una distribución de frecuencia, pero con más información, esto es, valores de datos en lugar de marcas.

Teoria Probabilidad

probabilidades son muy útiles, ya que pueden servir para desarrollar estrategias. Por ejemplo, algunos automovilistas parecen mostrar una mayor tendencia a aumentar la velocidad si creen que existe un riesgo pequeño de ser multados; los inversionistas estarán mas interesados en invertirse dinero si las posibilidades de ganar son buenas. El punto central en todos estos casos es la capacidad de cuantificar cuan probable es determinado evento. En concreto decimos que las probabilidades se utilizan para expresar cuan probable es un determinado evento.

Concepto clásico y como frecuencia relativa. 1 Definición Clásico. La probabilidad clásica: el enfoque clásico o a priori de la probabilidad se basa en la consideración de que los resultados de un experimento son igualmente posibles. Empleando el punto de vista clásico, la probabilidad de que suceda un evento se calcula dividiendo el numero de resultados favorables, entre el numero de resultados posibles.

2 La probabilidad clásica de un evento E, que denotaremos por P(E), se define como el número de eventos elementales que componen al evento E, entre el número de eventos elementales que componen el espacio muestral:

Como frecuencia relativa 1 probabilística: se basa en las frecuencias relativas. La probabilidad de que un evento ocurra a largo plazo se determina observando en que fracción de tiempo sucedieron eventos semejantes en el psado. La probabilidad de que un evento suceda se calcula por medio de:

P (E) numero de veces que el evento ocurrió en el pasado Numero total de observaciones

2 Definición Frecuencial. La definición frecuentista consiste en definir la probabilidad como el límite cuando n tiende a infinito de la proporción o frecuencia relativa del suceso. Sea un experimento aleatorio cuyo espacio muestral es E Sea A cualquier suceso

perteneciente a E Si repetimos n veces el experimento en las mismas Condiciones, la frecuencia relativa del suceso A será: Cuando el número n de repeticiones se hace muy

(3)

grande la frecuencia relativa converge hacia un valor que llamaremos probabilidad del suceso A. Es imposible llegar a este límite, ya que no podemos repetir el experimento un número infinito de veces, pero si podemos repetirlo muchas veces y observar como las frecuencias relativas tienden a estabilizarse Esta definición frecuentista de la probabilidad se llama también probabilidad a posteriori ya que sólo podemos dar la probabilidad de un suceso después de repetir y observar un gran número de veces el experimento aleatorio correspondiente. Algunos autores las llaman probabilidades teóricas.

PROBABILIDAD II

probabilidad constituye un importante parámetro en la determinación de las diversas causalidades obtenidas tras una serie de eventos esperados dentro de un rango estadístico. Existen diversas formas como método abstracto, como la teoría Dempster-Shafer y la teoría de la relatividad numérica, esta última con un alto grado de aceptación si se toma en cuenta que disminuye considerablemente las posibilidades hasta un nivel mínimo ya que somete a todas las antiguas reglas a una simple ley de relatividad. Así mismo es la parte de ley Aplicaciones

Dos aplicaciones principales de la teoría de la probabilidad en el día a día son en el análisis de riesgo y en el comercio de los mercados de materias primas. Los gobiernos normalmente aplican métodos probabilísticos en regulación ambiental donde se les llama "análisis de vías de dispersión", y a menudo miden el bienestar usando métodos que son estocásticos por naturaleza, y escogen qué proyectos emprender basándose en análisis estadísticos de su probable efecto en la población como un conjunto. No es correcto decir que la estadística está incluida en el propio modelado, ya que típicamente los análisis de riesgo son para una única vez y por lo tanto requieren más modelos de probabilidad fundamentales, por ej. "la probabilidad de otro 11-S". Una ley de números pequeños tiende a aplicarse a todas aquellas elecciones y percepciones del efecto de estas elecciones, lo que hace de las medidas probabilísticas un tema político.

Un buen ejemplo es el efecto de la probabilidad percibida de cualquier conflicto generalizado sobre los precios del petróleo en Oriente Medio - que producen un efecto dominó en la economía en conjunto. Un cálculo por un mercado de materias primas en que la guerra es más probable en contra de menos probable probablemente envía los precios hacia arriba o hacia abajo e indica a otros comerciantes esa opinión. Por consiguiente, las probabilidades no se calculan independientemente y tampoco son necesariamente muy racionales. La teoría de las finanzas conductuales surgió para describir el efecto de este pensamiento de grupo en el precio, en la política, y en la paz y en los conflictos.

Se puede decir razonablemente que el descubrimiento de métodos rigurosos para calcular y combinar los cálculos de probabilidad ha tenido un profundo efecto en la sociedad moderna. Por consiguiente, puede ser de alguna importancia para la mayoría de los ciudadanos entender cómo se calculan los pronósticos y las probabilidades, y cómo contribuyen a la reputación y a las decisiones, especialmente en una democracia.

(4)

Otra aplicación significativa de la teoría de la probabilidad en el día a día es en la fiabilidad. Muchos bienes de consumo, como los automóviles y la electrónica de consumo, utilizan la teoría de la fiabilidad en el diseño del producto para reducir la probabilidad de avería. La probabilidad de avería también está estrechamente relacionada con la garantía del producto.

Se puede decir que no existe una cosa llamada probabilidad. También se puede decir que la probabilidad es la medida de nuestro grado de incertidumbre, o esto es, el grado de nuestra ignorancia dada una situación. Por consiguiente, puede haber una probabilidad de 1 entre 52 de que la primera carta en un baraja de cartas es la J de diamantes. Sin embargo, si uno mira la primera carta y la reemplaza, entonces la probabilidad es o bien 100% o 0%, y la elección correcta puede ser hecha con precisión por el que ve la carta. La física moderna proporciona ejemplos importantes de situaciones determinísticas donde sólo la descripción probabilística es factible debido a información incompleta y la complejidad de un sistema así como ejemplos de fenómenos realmente aleatorios.

En un universo determinista, basado en los conceptos newtonianos, no hay probabilidad si se conocen todas las condiciones. En el caso de una ruleta, si la fuerza de la mano y el periodo de esta fuerza es conocido, entonces el número donde la bola parará será seguro. Naturalmente, esto también supone el conocimiento de la inercia y la fricción de la ruleta, el peso, lisura y redondez de la bola, las variaciones en la velocidad de la mano durante el movimiento y así sucesivamente. Una descripción probabilística puede entonces ser más práctica que la mecánica newtoniana para analizar el modelo de las salidas de lanzamientos repetidos de la ruleta. Los físicos se encuentran con la misma situación en la teoría cinética de los gases, donde el sistema determinístico en principio, es tan complejo (con el número de moléculas típicamente del orden de magnitud de la constante de Avogadro) que sólo la descripción estadística de sus propiedades es viable.

La mecánica cuántica, debido al principio de indeterminación de Heisenberg, sólo puede ser descrita actualmente a través de distribuciones de probabilidad, lo que le da una gran importancia a las descripciones probabilísticas. Algunos científicos hablan de la expulsión del paraíso.[cita requerida] Otros no se conforman con la pérdida del determinismo. Albert Einsteincomentó estupendamente en una carta a Max Born: Jedenfalls bin ich überzeugt, daß der Alte nicht würfelt. (Estoy convencido de que Dios no tira el dado). No obstante hoy en día no existe un medio mejor para describir la física cuántica si no es a través de la teoría de la probabilidad. Mucha gente hoy en día confunde el hecho de que la mecánica cuántica se describe a través de distribuciones de probabilidad con la suposición de que es por ello un proceso aleatorio, cuando la mecánica cuántica es probabilística no por el hecho de que siga procesos aleatorios sino por el hecho de no poder determinar con precisión sus parámetros fundamentales, lo que imposibilita la creación de un sistema de ecuaciones determinista.

La teoría de la probabilidad es la teoría matemática que modela los fenómenos aleatorios. Estos deben contraponerse a los fenómenos determinísticos, en los cuales el resultado de un experimento, realizado bajo condiciones determinadas, produce un resultado único o previsible: por ejemplo, el agua calentada a 100 grados Celsius, a nivel del mar, se transforma en vapor. Un fenómeno aleatorio es aquel que, a pesar de realizarse el

(5)

experimento bajo las mismas condiciones determinadas, tiene como resultados posibles un conjunto de alternativas, como el lanzamiento de un dado o de una moneda.

Los procesos reales que se modelizan como procesos aleatorios pueden no serlo realmente; cómo tirar una moneda o un dado no son procesos aleación en sentido estricto, ya que no se reproducen exactamente las mismas condiciones iniciales que lo determinan, sino sólo unas pocas. En los procesos reales que se modelizan mediante distribuciones de probabilidad corresponden a modelos complejos donde no se conocen a priori todos los parámetros que intervienen; ésta es una de las razones por las cuales la estadística, que busca determinar estos parámetros, no se reduce inmediatamente a la teoría de la probabilidad en sí.

En 1933, el matemático soviético Andréi Kolmogórov propuso un sistema de axiomas para la teoría de la probabilidad, basado en la teoría de conjuntos y en la teoría de la medida, desarrollada pocos años antes por Lebesgue, Borel y Frechet entre otros.

Esta aproximación axiomática que generaliza el marco clásico de la probabilidad, la cual obedece a la regla de cálculo de casos favorables sobre casos posibles, permitió la rigorización de muchos argumentos ya utilizados, así como el estudio de problemas fuera de los marcos clásicos. Actualmente, la teoría de la probabilidad encuentra aplicación en las más variadas ramas del conocimiento, como puede ser la física (donde corresponde

mencionar el desarrollo de las difusiones y el movimiento Browniano), o las finanzas (donde destaca el modelo de Black y Scholes para la valuación de acciones).

Figure

Updating...

References